Abstract
Image processing tasks has found a new dimension with the improvement of learning feature representation from images using deep networks. Most of the research works are conducted over pre-possessed image data in the lab. But, these methods fail in the real world scenario as most of the time the image required to classify is subject to noise and other disfigurement. For the last three decades, many researches has been conducted and numerus algorithms have been proposed with varying performances to classify noisy images. But in recent times, various autoencoders have outperformed all traditional methods for reconstructing native image from it's noisy form and opened a new door for the research of noisy image classification. In this paper, we studied various auto encoders for reconstructing native images from noisy input images. We have applied convolutional neural network as classifier. Before classification task we have rectified noisy images using denoising autoencoder, convolutional denoising autoencoder and finally a hybrid of them as proposed in this paper. The proposed methods are evaluated by experimenting over benchmark dataset adulterated with noises of different proportionate. This method has outperformed some other prominent methods achieving satisfying classification accuracy even when the image is too much noisy (50% noise is added with the image data).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.