Abstract

Malaria, a critical global health issue, can lead to severe complications and mortality if not treated promptly. The conventional diagnostic method, involving a microscopic examination of blood smears, is time-consuming and requires extensive expertise. To address these challenges, computer-assisted diagnostic methods have been explored. Among these, Convolutional Neural Networks (CNN), a deep learning technique, has shown considerable promise for image classification tasks, including the analysis of microscopic blood smear images. In this study, we employ the NIH Malaria dataset, which consists of 27,558 images, to train a CNN model. The dataset is divided into parasitized (malaria-infected) and uninfected. The CNN architecture designed for this study includes three convolutional layers and two fully connected layers. We compare the performance of this model with that of a pre-trained VGG-16 model to determine the most effective approach for malaria diagnosis. The proposed CNN model demonstrates high accuracy, achieving a value of 96.81%. Furthermore, it records a recall of 0.97, a precision of 0.97, and an F1-score of 0.97. These metrics indicate a robust performance, outperforming previous studies and highlighting the model's potential for accurate malaria diagnosis. This study underscores the potential of CNN in medical image classification and supports its implementation in clinical settings to enhance diagnostic accuracy and efficiency. The findings suggest that with further refinement and validation, such models could significantly improve the speed and reliability of malaria diagnostics, ultimately aiding in better disease management and patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.