Abstract
Wetlands mapping using multispectral imagery from Landsat multispectral scanner (MSS) and thematic mapper (TM) and Système pour l'observation de la Terre (SPOT) does not in general provide high classification accuracies because of poor spectral and spatial resolutions. This study tests the feasibility of using high-resolution hyperspectral imagery to map wetlands in Iowa with two nontraditional classification techniques: the spectral angle mapper (SAM) method and a new nonparametric object-oriented (OO) classification. The software programs used were ENVI and eCognition. Accuracies of these classified images were assessed by using the information collected through a field survey with a global positioning system and high-resolution color infrared images. Wetlands were identified more accurately with the OO method (overall accuracy 92.3%) than with SAM (63.53%). This paper also discusses the limitations of these classification techniques for wetlands, as well as discussing future directions for study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have