Abstract

In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies of up to 80% are obtained when classifying between two-finger pinch and whole-hand grasp hand postures despite differences in applied force levels across trials. Furthermore, we show that a four-class classification accuracy of 50% is achieved when predicting both hand posture and force level during a two-force, two-hand-posture grasping task, with hand posture most reliably predicted during high-force trials. These results suggest that the application of force plays a significant role in ECoG signal modulation observed during motor tasks, emphasizing the potential for electrocorticography to serve as a source of control signals for dexterous neuroprosthetic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.