Abstract

This work creates a fish species identification tool combining a low-cost, custom-made multispectral camera called MultiCam and a trained classification algorithm for application in the fishing industry. The objective is to assess, non-destructively and using reflectance spectroscopy, the possibility of classifying the spectra of small fish neighborhoods instead of the whole fish for situations where fish are not completely visible, and use the classification to estimate the percentage of each fish species captured. To the best of the authors’ knowledge, this is the first work to study this possibility. The multispectral imaging device records images from 10 horse mackerel, 10 Atlantic mackerel, and 30 sardines, the three most abundant fish species in Portugal. This results in 48,741 spectra of 5 × 5 pixel regions for analysis. The recording occurs in twelve wavelength bands from 390 nm to 970 nm. The bands correspond to filters with the peculiarity of being highpass to keep the camera cost low. Using a Teflon tape white reference is also relevant to control the overall cost. The tested machine learning algorithms are k-nearest neighbors, multilayer perceptrons, and support vector machines. In general, the results are better than random guessing. The best classification comes from support vector machines, with a balanced accuracy of 63.8%. The use of Teflon does not seem to be detrimental to this result. It seems possible to obtain an equivalent accuracy with ten cameras instead of twelve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call