Abstract

Diabetic retinopathy (DR) is a common retinal vascular disease, which can cause severe visual impairment. It is of great clinical significance to use fundus images for intelligent diagnosis of DR. In this paper, an intelligent DR classification model of fundus images is proposed. This method can detect all the five stages of DR, including of no DR, mild, moderate, severe, and proliferative. This model is composed of two key modules. FEB, feature extraction block, is mainly used for feature extraction of fundus images, and GPB, grading prediction block, is used to classify the five stages of DR. The transformer in the FEB has more fine-grained attention that can pay more attention to retinal hemorrhage and exudate areas. The residual attention in the GPB can effectively capture different spatial regions occupied by different classes of objects. Comprehensive experiments on DDR datasets well demonstrate the superiority of our method, and compared with the benchmark method, our method has achieved competitive performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.