Abstract

Glioma histologies are the primary factor in prognostic estimates and are used in determining the proper course of treatment. Furthermore, due to the sensitivity of cranial environments, real-time tumor-cell classification and boundary detection can aid in the precision and completeness of tumor resection. A recent improvement to mass spectrometry known as desorption electrospray ionization operates in an ambient environment without the application of a preparation compound. This allows for a real-time acquisition of mass spectra during surgeries and other live operations. In this paper, we present a framework using sparse kernel machines to determine a glioma sample's histopathological subtype by analyzing its chemical composition acquired by desorption electrospray ionization mass spectrometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.