Abstract

18F-florbetaben (FBB) positron emission tomography is a representative imaging test that observes amyloid deposition in the brain. Compared to delay-phase FBB (dFBB), early-phase FBB shows patterns related to glucose metabolism in 18F-fluorodeoxyglucose perfusion images. The purpose of this study is to prove that classification accuracy is higher when using dual-phase FBB (dual FBB) versus dFBB quantitative analysis by using machine learning and to find an optimal machine learning model suitable for dual FBB quantitative analysis data. The key features of our method are (1) a feature ranking method for each phase of FBB with a cross-validated F1 score and (2) a quantitative diagnostic model based on machine learning methods. We compared four classification models: support vector machine, naïve Bayes, logistic regression, and random forest (RF). In composite standardized uptake value ratio, RF achieved the best performance (F1: 78.06%) with dual FBB, which was 4.83% higher than the result with dFBB. In conclusion, regardless of the two quantitative analysis methods, using the dual FBB has a higher classification accuracy than using the dFBB. The RF model is the machine learning model that best classifies a dual FBB. The regions that have the greatest influence on the classification of dual FBB are the frontal and temporal lobes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.