Abstract
Diagnosis of brain diseases is considered one of the most challenging medical tasks to perform, even for medical experts who rely on high-resolution anatomical images to identify signs of abnormalities by visual inspection. However, new computational tools which assist to automate this diagnosis have the potential to significantly improve the speed and accuracy of this process. This work presents a model to aid in the task of classification of structural Magnetic Resonance Imaging scans. The classification is performed using a Support Vector Machine, whilst the features to analyze belong to a dictionary space. Such space was mainly built from a dictionary learning perspective, although a predefined one was also assessed. The results indicate that features learnt from the data of interest lead to improved classification performance. The proposed framework was tested on the ADNI dataset stage I.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.