Abstract

Sonar performance modeling is crucial for submarine and anti–submarine operations. The validity of sonar performance models is generally limited by environmental uncertainty, and particularly uncertainty in the vertical sound speed profile (SSP). Rapid environmental assessment (REA) products, such as oceanographic surveys and ocean models may be used to reduce this uncertainty prior to sonar operations. Empirical orthogonal functions (EOF) applied on the SSPs inherently take into account the vertical gradients and therefore the acoustic properties. We present a method that employs EOFs and a grouping algorithm to divide a large group of SSPs from an ocean model simulation into smaller groups with similar SSP characteristics. Such groups are henceforth called acoustically stable groups. Each group represents a subset in space and time within the ocean model domain. Regions with low acoustic variability contain large and geographically contiguous acoustically stable groups. In contrast, small or fragmented acoustically stable groups are found in regions with high acoustic variability. The main output is a map of the group distribution. This is a REA product in itself, but the map may also be used as a planning aid for REA survey missions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call