Abstract
In this article we analyze totally periodic pseudo-Anosov flows in graph 3-manifolds. This means that in each Seifert fibered piece of the torus decomposition, the free homotopy class of regular fibers has a finite power which is also a finite power of the free homotopy class of a closed orbit of the flow. We show that each such flow is topologically equivalent to one of the model pseudo-Anosov flows which we previously constructed in Barbot and Fenley (Pseudo-Anosov flows in toroidal manifolds.Geom. Topol. 17(2013), 1877–1954). A model pseudo-Anosov flow is obtained by glueing standard neighborhoods of Birkhoff annuli and perhaps doing Dehn surgery on certain orbits. We also show that two model flows on the same graph manifold are isotopically equivalent (i.e. there is a isotopy of$M$mapping the oriented orbits of the first flow to the oriented orbits of the second flow) if and only if they have the same topological and dynamical data in the collection of standard neighborhoods of the Birkhoff annuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.