Abstract

Traditionally, there has been a clear distinction between classical systems and quantum systems, particularly in the mathematical theories used to describe them. In our recent work on macroscopic quantum systems, this distinction has become blurred, making a unified mathematical formulation desirable, so as to show up both the similarities and the fundamental differences between quantum and classical systems. This paper serves this purpose, with explicit formulations and a number of examples in the form of superconducting circuit systems. We introduce three classes of physical systems with finite degrees of freedom: classical, standard quantum, and mixed quantum, and present a unified Hilbert space treatment of all three types of system. We consider the classical/quantum divide and the relationship between standard quantum and mixed quantum systems, illustrating the latter with a derivation of a superselection rule in superconducting systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call