Abstract

We review the boson transformation method to deal with spontaneous symmetry breaking in quantum field theory, focussing on how it describes the emergence of extended and classical objects in such quantum context. We then apply the method to the emergence of space itself, as an extended and classical object resulting from the evaporation of a quantum black hole. In particular, we show how classical torsion and curvature tensors can emerge as effects of an inhomogeneous Nambu–Goldstone boson condensation in vacuum, in E(3) invariant spinor models with symmetry breaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.