Abstract

Many outdoor gardens are designed for plants to grow in soil. Few gardens are designed for plants to be hydroponically grown outside with energy and water capture technologies. The feasibility of a selfsufficient, adaptive hydroponic garden harnessing energy from multiple renewable energy (solar and wind) and rainwater collection techniques while producing food has been considered. This study's primary objective is to conduct a comparative analysis between a traditional soil garden bed and an outdoor hydroponic system, called Pangea. The study findings suggest no significant statistical difference between the plants grown in traditional soil and a Pangea system. Additional objectives of this study include a comparative analysis of water and energy differentials between a standard garden and Pangea. This study's energy findings suggest that the Pangea system produces 0.05 kWh of energy to 0 kWh of energy production in the classic soil over a month timespan. The water production findings indicate that a Pangea system produces 198.01 L of water and a classic soil of 69 L for a timespan of 1 month, concluding a positive water differential of 288.12 L and a negative water differential of 414 L after 6 months. The study findings suggest the combination of sustainable practices can limit the negative effects of weather-related events to create a positive differential for producing food, water, and energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call