Abstract

This paper reports a numerical study of complex classical trajectories of a particle in an elliptic potential. This study of doubly periodic potentials is a natural sequel to earlier work on complex classical trajectories in trigonometric potentials. For elliptic potentials, there is a two-dimensional array of identical cells in the complex plane, and each cell contains a pair of turning points. The particle can travel both horizontally and vertically as it visits these cells, and sometimes the particle is captured temporarily by a pair of turning points. If the particle's energy lies in a conduction band, the particle drifts through the lattice of cells and is never captured by the same pair of turning points more than once. However, if the energy of the particle is not in a conduction band, the particle can return to previously visited cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.