Abstract

On the basis of extensive numerical studies it is argued that there are strong analogies between the probabilistic behavior of quantum systems defined by Hermitian Hamiltonians and the deterministic behavior of classical mechanical systems extended into the complex domain. Three models are examined: the quartic double-well potential V(x) = x4 − 5x2, the cubic potential , and the periodic potential V(x) = −cos x. For the quartic potential a wave packet that is initially localized in one side of the double-well can tunnel to the other side. Complex solutions to the classical equations of motion exhibit a remarkably analogous behavior. Furthermore, classical solutions come in two varieties, which resemble the even-parity and odd-parity quantum-mechanical bound states. For the cubic potential, a quantum wave packet that is initially in the quadratic portion of the potential near the origin will tunnel through the barrier and give rise to a probability current that flows out to infinity. The complex solutions to the corresponding classical equations of motion exhibit strongly analogous behavior. For the periodic potential a quantum particle whose energy lies between −1 and 1 can tunnel repeatedly between adjacent classically allowed regions and thus execute a localized random walk as it hops from region to region. Moreover, if the energy of the quantum particle lies in a conduction band, then the particle delocalizes and drifts freely through the periodic potential. A classical particle having complex energy executes a qualitatively analogous local random walk, and there exists a narrow energy band for which the classical particle becomes delocalized and moves freely through the potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.