Abstract

Classical Nucleation Theory (CNT), linking rare nucleation events to the free-energy landscape of a growing nucleus, is central to understanding phase-change kinetics in passive fluids. Nucleation in nonequilibrium systems is much harder to describe because there is no free energy, but instead a dynamics-dependent quasipotential that typically must be found numerically. Here we extend CNT to a class of active phase-separating systems governed by a minimal field-theoretic model (Active Model B+). In the small noise and supersaturation limits that CNT assumes, we compute analytically the quasipotential, and hence, nucleation barrier, for liquid-vapor phase separation. Crucial to our results, detailed balance, although broken microscopically by activity, is restored along the instanton trajectory, which in CNT involves the nuclear radius as the sole reaction coordinate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.