Abstract

We demonstrate squeezing of a strongly interacting optoelectromechanical system using a parametric drive. By employing real-time feedback on the phase of the pump at twice the resonance frequency the thermomechanical noise is squeezed beyond the 3 dB instability limit. Surprisingly, this method can also be used to generate highly nonlinear states. We show that using the parametric drive with feedback on, classical numberlike and catlike states can be prepared. This presents a valuable electro-optomechanical state-preparation protocol that is extendable to quantum regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.