Abstract

Highly nonclassical character of optical quantum detectors, such as single-photon detectors, is essential for preparation of quantum states of light and a vast majority of applications in quantum metrology and quantum information processing. Therefore, it is both fundamentally interesting and practically relevant to investigate the nonclassical features of optical quantum measurements. Here we propose and experimentally demonstrate a procedure for direct certification of quantum non-Gaussianity and Wigner function negativity, two crucial nonclassicality levels, of photonic quantum detectors. Remarkably, we characterize the highly nonclassical properties of the detector by probing it with only two classical thermal states and a vacuum state. We experimentally demonstrate the quantum non-Gaussianity of a single-photon avalanche diode even under the presence of background noise, and we also certify the negativity of the Wigner function of this detector. Our results open the way for direct benchmarking of photonic quantum detectors with a few measurements on classical states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call