Abstract

We have investigated the transition from the atomistic to the macroscopic impact mechanism by simulating large Argon cluster impacts on amorphous silica. The transition occurs at cluster sizes less than $50\text{ }000$ atoms at hypervelocity regime (22 km/s). After that, the crater volume increases linearly with the cluster size opposite to the nonlinear scaling typical of small cluster impacts. The simulations demonstrate that the molecular dynamics method can be used to explore atomistic mechanisms that lead to damage formation in small particle impacts, for example, in impacts of micrometeorites on spacecraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.