Abstract

Although quantum walks exhibit peculiar properties that distinguish them from random walks, classical behavior can be recovered in the asymptotic limit by destroying the coherence of the pure state associated to the quantum system. Here I show that this is not the only way: I introduce a quantum walk driven by an inhomogeneous, time-dependent coin operator, which mimics the statistical properties of a random walk at all time scales. The quantum particle undergoes unitary evolution and, in fact, the high correlation evidenced by the components of the wave function can be used to revert the outcome of an accidental measurement of its chirality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.