Abstract
It is now established that small Kerr-Anti-de Sitter (Kerr-AdS) black holes are unstable against scalar perturbations, via superradiant amplification mechanism. We show that small Kerr-AdS black holes are also unstable against gravitational perturbations and we compute the features of this instability. We also describe with great detail the evolution of this instability. In particular, we identify its endpoint state. It corresponds to a Kerr-AdS black hole whose boundary is an Einstein universe rotating with the light velocity. This black hole is expected to be slightly oblate and to co-exist in equilibrium with a certain amount of outside radiation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have