Abstract

It is now established that small Kerr-Anti-de Sitter (Kerr-AdS) black holes are unstable against scalar perturbations, via superradiant amplification mechanism. We show that small Kerr-AdS black holes are also unstable against gravitational perturbations and we compute the features of this instability. We also describe with great detail the evolution of this instability. In particular, we identify its endpoint state. It corresponds to a Kerr-AdS black hole whose boundary is an Einstein universe rotating with the light velocity. This black hole is expected to be slightly oblate and to co-exist in equilibrium with a certain amount of outside radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.