Abstract

We provide a rigorous derivation of nonlinear Gibbs measures in two and three space dimensions, starting from many-body quantum systems in thermal equilibrium. More precisely, we prove that the grand-canonical Gibbs state of a large bosonic quantum system converges to the Gibbs measure of a nonlinear Schrodinger-type classical field theory, in terms of partition functions and reduced density matrices. The Gibbs measure thus describes the behavior of the infinite Bose gas at criticality, that is, close to the phase transition to a Bose–Einstein condensate. The Gibbs measure is concentrated on singular distributions and has to be appropriately renormalized, while the quantum system is well defined without any renormalization. By tuning a single real parameter (the chemical potential), we obtain a counter-term for the diverging repulsive interactions which provides the desired Wick renormalization of the limit classical theory. The proof relies on a new estimate on the entropy relative to quasi-free states and a novel method to control quantum variances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.