Abstract

The classical trajectory approach has been used to study the nonthermal desorption of CO from a variety of model surfaces to which it is weakly adsorbed. In addition to three degrees of freedom for the CO adsorbate (bond stretching, physisorption, libration), a significant number of lattice degrees of freedom have been included using the generalized Langevin approximation. Nonthermal amounts of energy have been put into both the CO stretching and librational modes at t=0. We find that for initial values of the stretching quantum number vstr=0–10, desorption does not take place at all within 12.5 ps unless there is also significant librational excitation. The detailed mechanism by which librational energy causes desorption is discussed. The role of the surface is also explored; we find that the probability of desorption is a nonmonotonic function of the Debye frequency of the solid in the range 28–915 cm−1, and is larger for lattices with either ‘‘high’’ or ‘‘low’’ Debye frequencies than for lattices with ‘‘intermediate’’ Debye frequencies. This result is partially explained in terms of resonances between low frequency libration and physisorption modes and high frequency phonon modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.