Abstract

We reason in support of the universality of quantum spectral fluctuations in chaotic systems, starting from the pioneering work of Sieber and Richter who expressed the spectral form factor in terms of pairs of periodic orbits with self-crossings and avoided crossings. Dropping the restriction to uniformly hyperbolic dynamics, we show that for general hyperbolic two-freedom systems with time-reversal invariance the spectral form factor is faithful to random-matrix theory, up to quadratic order in time. We re late the action difference within the contributing pairs of orbits to properties of stable and unstable manifolds. In studying the effects of conjugate points, we show that almost self-retracing orbit loops do not contribute to the form factor. Our findings are substantiated by numerical evidence for the concrete example of two billiard systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.