Abstract

Geometrically frustrated interactions may render classical ground states macroscopically degenerate. The connection between classical and quantum liquids and how the degeneracy is affected by quantum fluctuations is, however, not completely understood. We study a simple model of coupled quantum and classical degrees of freedom, the so-called Falicov-Kimball model, on a triangular lattice and away from half-filling. For weak interactions the phase diagram features a charge disordered state down to zero temperature. We provide compelling evidence that this phase is a liquid and show that it is divided by a crossover line that terminates in a quantum critical point. Our results offer a new vantage point to address how quantum liquids can emerge from their classical counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call