Abstract

The mathematical model describing a light beam prepared in an arbitrary quantum optical state is a quasifree quantum stochastic process on the C* algebra of the canonical commutatation relations. For such quantum stochastic processes the concept of stochastic states is introduced. Stochastic quantum states have a classical analog in the following sense: If the light beam is prepared in a stochastic state, one can construct a generalized classical stochastic process, such that the distributions of the quantum observables and the classical random variables coincide. A sufficient algebraic condition for the stochasticity of a quantum state is formulated. The introduced formalism generalizes the Wigner representation from a single field mode to a continuum of modes. For the special case of a single field mode the stochasticity condition provides a new criterion for the positivity of the Wigner function related to the given state. As an example the quantized eletromagnetic field in empty space at temperature T=0 is discussed. It turns out that the corresponding classical stochastic process is not a white noise but a colored noise with a linearly increasing spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call