Abstract

AbstractAlkanethiol‐coated metal nanoparticles are fascinating materials for designing unconventional electronic and magnetic functions. Novel classes of magnetic nanosystems can be created using Pd and Pt nanoparticles and their alloys with a 3d transition metal using quantum size, interface and exchange enhancement effects. The charge transfer at the metal–organic interface and the quantum size effect render Pt and Pd nanoparticles magnetic with localised moments. The substitution of capping molecules with a TTF derivative having a long alkanethiol substituent decreases the totalspin concentration due to partial oxidation of the TTF units. Pd nanoparticles containing Co atoms as magnetic centres have significantly enhanced magnetic moments because of the exchange enhancement. Interestingly, in Pd nanoparticles of 2 nm in diameter containing only one Co atom per particle, the Co atom magnetises all of the Pd atoms in the particle. Therefore, the nanoparticles behave as a single nanoparticle magnet that shows blocking behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.