Abstract
We address the problem of maintaining the correct answer-sets to the Conditional Maximizing Range-Sum (C-MaxRS) query in spatial data streams. Given a set of (possibly weighted) 2D point objects, the traditional MaxRS problem determines an optimal placement for an axes-parallel rectangle r so that the number -- or, the weighted sum -- of objects in its interior is maximized. In many practical settings, the objects from a particular set -- e.g., restaurants -- can be of distinct types -- e.g., fast-food, Asian, etc. The C-MaxRS problem deals with maximizing the overall sum, given class-based existential constraints, i.e., a lower bound on the count of objects of interests from particular classes. We first propose an efficient algorithm to the static C-MaxRS query, and extend the solution to handle dynamic (data streams) settings. Our experiments over datasets of up to 100,000 objects show that the proposed solutions provide significant efficiency benefits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have