Abstract

The cutting and sewing process is a traditional flow shop scheduling problem in the real world. This two-stage flexible flow shop is often commonly associated with manufacturing in the fashion and textiles industry. Many investigations have demonstrated that the ant colony optimization (ACO) algorithm is effective and efficient for solving scheduling problems. This work applies a novel effective ant colony optimization (EACO) algorithm to solve two-stage flexible flow shop scheduling problems and thereby minimize earliness, tardiness, and makespan. Computational results reveal that for both small and large problems, EACO is more effective and robust than both the particle swarm optimization (PSO) algorithm and the ACO algorithm. Importantly, this work demonstrates that EACO can solve complex scheduling problems in an acceptable period of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.