Abstract

Little is known about the mobility, reactivity, and toxicity to plants of coated engineered nanoparticles (ENPs). Surface modification may change the interaction of ENPs with living organisms. This report describes surface changes in commercial CeO2 NPs coated with citric acid (CA) at molar ratios of 1:2, 1:3, 1:7, and 1:10 CeO2:CA, and their effects on radish (Raphanus sativus) seed germination, cerium and nutrients uptake. All CeO2 NPs and their absorption by radish plants were characterized by TEM, DLS, and ICP-OES. Radish seeds were germinated in pristine and CA coated CeO2 NPs suspensions at 50mg/L, 100mg/L, and 200mg/L. Deionized water and CA at 100mg/L were used as controls. Results showed ζ potential values of 21.6mV and −56mV for the pristine and CA coated CeO2 NPs, respectively. TEM images showed denser layers surrounding the CeO2 NPs at higher CA concentrations, as well as better distribution and smaller particle sizes. None of the treatments affected seed germination. However, at 200mg/L the CA coated NPs at 1:7 ratio produced significantly (p≤0.05) more root biomass, increased water content and reduced by 94% the Ce uptake, compared to bare NPs. This suggests that CA coating decrease CeO2 NPs toxicity to plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.