Abstract
To assess the role of citric acid, as a typical low-molecular-weight organic acid from root exudates, on cerium (Ce) uptake, accumulation and translocation in rice seedlings (Oryza sativa L.) exposed to two CeO2 nanoparticles (NPs) (14 nm and 25 nm). A hydroponic experiment was performed under two citric acid levels (0.01 and 0.04 mmol L−1) combined with iron plaque presence. Citric acid significantly enhanced surface-Ce, root-Ce and shoot-Ce accumulation, irrespective of NPs size and iron plaque presence. The increased surface-Ce was associated with the promoted interactive attraction between NPs and root surface, and the enhanced NPs dissolution. Surface-Ce (containing crystalline and amorphous fractions of iron plaque) accumulation increased with the increase of citric acid concentrations. However, the enhancement influence of 0.01 mmol L−1 citric acid on root-Ce, shoot-Ce accumulations, rice-Ce distribution and TFroot-shoot was more remarkable than citric acid (0.04 mmol L−1), which suggested higher food security risk for human health with environment-level citric acid. Iron plaque presence attenuated the enhancement effect of citric acid on rice-Ce accumulation and distribution (containing surface-Ce, root-Ce and shoot-Ce) due to the reduced attractive interaction between NPs and root surface from the effect of Fe2+ being dissolved by iron plaque. Above effect of citric acid and iron plaque was more remarkable in 25 nm NP than 14 nm NP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.