Abstract
Ethnopharmacological relevanceMume Fructus (MF) is processed from the near-ripe fruit of Prunus mume (Siebold) Siebold & Zucc by drying at low temperature until the color turns black. MF is often used in Chinese medicine for the treatment of chronic diarrhea and dysentery. Previous studies have shown that the active components of MF against Crohn's disease (CD) are mainly citrate and hydroxycinnamate derivatives, which can alleviate the CD-induced inflammatory response and intestinal barrier damage. However, their molecular mechanisms on CD still need further elucidation. Aim of the studyTo investigate the protective effects and underlying mechanisms of citrate and hydroxycinnamate derivatives in MF on intestinal epithelial injury. Materials and methodsNetwork pharmacology technology was used to predict the anti-CD targets and molecular mechanisms of 4 citrate and 11 hydroxycinnamate derivative prototypes and 5 hydroxycinnamate derivative metabolites in the 40% ethanol fraction of MF (MFE40), the active anti-CD ingredient group of MF. Lipopolysaccharide (LPS)-treated IEC-6 cells were used to investigate the effects of the above components on the proliferation of damaged IEC-6 cells and to verify the molecular mechanism of their regulation on the FAK/PI3K/AKT signaling pathways for the promotion of the proliferation of IEC-6 cells. ResultsA “compound-target-pathway” network was constructed based on network pharmacology analysis, including 20 citrate and hydroxycinnamate derivatives that target 316 core proteins and 36 CD-related pathways, of which PI3K-AKT pathway and focal adhesion were the most enriched pathways. Further cell validation experiments showed that 1 citric acid (CA) compound and 10 hydroxycinnamate derivatives, including 3-O-caffeoylquinic acid (3CQA), 4-O-caffeoylquinic acid (4CQA), 5-O-caffeoylquinic acid (5CQA), caffeic acid (CFA), p-coumaric acid (PCMA), m-coumaric acid (MCMA), ferulic acid (FUA), isoferulic acid (IFUA), 3-hydroxyphenylpropionic acid (3HPPA) and hippuric acid (HPP), could promote the proliferation of IEC-6 cells and inhibit the damage of LPS to IEC-6 cells. Ethyl caffeate (ECFA), a hydroxycinnamic acid derivative, had no effect on promoting the proliferation of IEC-6 cells and was weak in inhibiting the damage of IEC-6 cells caused by LPS. Further mechanistic verification experiments showed that 7 citrate and hydroxycinnamate derivatives (CA, CFA, 3CQA, MCMA, FUA, 3HPPA, and HPP) could upregulate the expression of p-FAK, p-PI3K, and p-AKT proteins. Among them, CA had the better effect on activating the FAK-PI3K-AKT signaling pathway. ConclusionsCitrate and hydroxycinnamate derivatives in MF can ameliorate LPS-induced intestinal epithelial cell injury to demonstrate potential for Crohn's disease alleviation. This protective effect can be achieved by upregulating FAK/PI3K/AKT pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have