Abstract

Background: Osteoporosis tends to be the major consequence of fractures in women above the age of 50 years and men are prone above the age of 65 years. The structure of bone is severely deteriorated by the reduction in bone density which eventually causes both nonfatal and fatal fractures in geriatric population. Recent researches were targeted to discover a drug which increases bone resorption and inhibits bone osteoporosis, thereby preventing fracture risk in older population. Methods: Citral is an aliphatic unsaturated aldehyde present in lemongrass and it renders the lemon fragrance to the lemongrass plant. Citral possesses various pharmacological properties such anti-adipogenic, anti-inflammatory, antimicrobial, and anti-carcinogenic and it also acts as a diuretic agent and stimulates the central nervous system. Therefore, we endeavor to investigate the osteogenic property of citral in vitro condition. Human osteoblast-like MG-63 cells were chosen for the current investigation and treated with various doses of citral for different time durations. Results: Citral cytotoxicity effects on MG-63 cell lines and their proliferation were assessed using MTT assay and optical microscopical analysis. Further to analyze the osteoblastic activity of citral on MG-63 osteoblast-like cells, we estimated the levels and mRNA expression of bone biomarkers alkaline phosphatase, osteocalcin, and collagen in control and citral-treated cells. To confirm the osteoblastic activity of citral, the MG-63 osteoblast-like cells were subjected to staining with Alizarin red S. The results of MTT assay and microscopic analysis of citral-treated cells proved that citral induces osteoblast-like MG-63 cell line proliferation. Osteogenic bone biomarkers such as alkaline phosphatase, osteocalcin, and collagen were significantly increased in citral-treated which corroborate the osteogenic activity of citral. Conclusion: Further, the Alizarin red S staining confirmed the induction of mineral deposition in MG-63 cells by citral. Overall, our results authentically proved that citral induces proliferation, maturation, and mineralization in human osteoblast-like MG-63 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.