Abstract
Even as novel technologies emerge and medicines advance, pathogen-transmitting mosquitoes pose a deadly and accelerating public health threat. Detecting and mitigating the spread of Anopheles stephensi in Africa is now critical to the fight against malaria, as this invasive mosquito poses urgent and unprecedented risks to the continent. Unlike typical African vectors of malaria, An. stephensi breeds in both natural and artificial water reservoirs, and flourishes in urban environments. With An. stephensi beginning to take hold in heavily populated settings, citizen science surveillance supported by novel artificial intelligence (AI) technologies may offer impactful opportunities to guide public health decisions and community-based interventions. Coalitions like the Global Mosquito Alert Consortium (GMAC) and our freely available digital products can be incorporated into enhanced surveillance of An. stephensi and other vector-borne public health threats. By connecting local citizen science networks with global databases that are findable, accessible, interoperable, and reusable (FAIR), we are leveraging a powerful suite of tools and infrastructure for the early detection of, and rapid response to, (re)emerging vectors and diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.