Abstract

Abstract A series of cirrus cloud simulations performed using a model with explicit cloud microphysics is applied to testing ice water content retrieval algorithms based on millimeter-wave radar reflectivity measurements. The simulated ice particle size spectra over a 12-h growth/dissipation life cycle are converted to equivalent radar reflectivity factors Ze and visible optical extinction coefficients σ, which are used as a test dataset to intercompare the results of various algorithms. This approach shows that radar Ze-only approaches suffer from significant problems related to basic temperature-dependent cirrus cloud processes, although most algorithms work well under limited conditions (presumably similar to those of the empirical datasets from which each was derived). However, when lidar or radiometric measurements of σ or cloud optical depth are used to constrain the radar data, excellent agreement with the modeled contents can be achieved under the conditions simulated. Implications for the satelli...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.