Abstract

Circulating microRNAs (miRs) are promising biomarkers for heart failure (HF). Previous studies have provided inconsistent miR "signatures." The phenotypic and pathophysiologic heterogeneity of HF may have contributed to this inconsistency. In this study we assessed whether advanced HF (AHF) patients present a distinct miR signature compared with healthy subjects (HS) and mild to moderate HF (MHF) patients. The study consisted of 2 phases: a screening phase and a validation phase. In the screening phase, 752 miRs were profiled in HS and MHF and AHF patients (N = 15), using the real-time quantitative polymerase chain reaction (RT-qPCR) technique and global mean normalization. In the validation phase, the miRs found to be significantly dysregulated in AHF patients compared with both HS and MHF patients were validated in 15 HS, 25 patients with MHF and 29 with AHF, using RT-qPCR, and normalizing to exogenous (cel-miR-39) and endogenous controls. In the screening phase, 5 miRs were found to be significantly dysregulated: -26a-5p; -145-3p; -150-5p; -485-3p; and -487b-3p. In the validation phase, miR-150-5p was confirmed to be significantly downregulated in AHF patients when compared with both HS and MHF patients, irrespective of the normalization method used. miR-26a-5p was confirmed to be significantly dysregulated only when normalized to cell-miR-39. Dysregulation of the other miRs could not be confirmed. miR-150-5p was significantly associated with maladaptive remodeling, disease severity and outcome. Our data suggest miR-150-5p as a novel circulating biomarker for AHF. The association of miR-150-5p with maladaptive remodeling, disease severity and outcome supports the pathophysiologic relevance of downregulated miR-150-5p expression to AHF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call