Abstract

Background CircRNA plays a regulatory role in multiple life processes. Circ_0122396 could participate in the regulation of age-related cataract (ARC) progression. However, the precise molecular mechanisms of circ_0122396 In ARC remain enigmatic. Methods Circ_0122396, microRNA (miR)-23a-3p, and matrix metalloprotease (MMP)-16 (MMP16) expression levels were detected via quantitative real-time polymerase chain reaction. Western blot was used to detect the levels of MMP16 and apoptosis-related proteins. Cell counting kit-8 analysis and 5-ethynyl-2’-deoxyuridine assay were used to assess human lens epithelial cells (HLECs) proliferation. Flow cytometry was performed to determine cell apoptosis. Levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-PX) were measured using commercial kits. Luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay were used to examine the interaction among circ_0122396, miR-23a-3p, and MMP16. Results Circ_0122396 and MMP16 were down-regulated while miR-23a-3p was up-regulated in ARC. H2O2 constrained proliferation and GSH-PX level, promotes apoptosis and MDA level in HLECs, and overexpression of circ_0122396 attenuated these effects. miR-23a-3p was a direct target of circ_0122396, and MMP16 was a direct target of miR-23a-3p. The effect of circ_0122396 overexpression on H2O2-induced HLECs was reversed by miR-23a-3p, and MMP16 elevation overturned the impacts of miR-23a-3p in H2O2-induced HLECs. Conclusions Circ_0122396 may regulate the progression of ARC via the miR-23a-3p/MMP16 pathway in H2O2-stimulated HLECs, which may serve as a potentially valuable biomarker and novel therapeutic target for ARC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call