Abstract

Circular RNA has been revealed to participate in multiple biological functions and contribute to various diseases' progression. This study aims to clarify the role of circ_0003028 and its potential molecular mechanism in hepatocellular carcinoma (HCC). The levels of circ_0003028, miR-498, and ornithine decarboxylase 1 (ODC1) mRNA were examined by quantitative real-time PCR. The cell proliferation ability was detected via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, colony formation, and 5-ethynyl-2'-deoxyuridine assays. The apoptotic rate was evaluated through flow cytometry. The migration and invasion capacity was tested by using wound healing assay and transwell assay. The protein levels of E-cadherin, N-cadherin, and vimentin were measured by western blot assay. The ceRNA regulatory mechanism of circ_0003028 was observed via dual-luciferase reporter and RNA pull-down assays. The mice xenograft models were constructed to confirm the oncogenicity of circ_0003028 in HCC in vivo . Circ_0003028 and ODC1 were upregulated, whereas miR-498 was downregulated in HCC tissues and cells. Circ_0003028 knockdown inhibited cell proliferation and metastasis, and promoted apoptosis. MiR-498 was a direct target of circ_0003028, and inhibition of miR-498 reversed the inhibitory effect of circ_0003028 silencing on HCC progression. Moreover, ODC1 was a direct target of miR-498 and ODC1 overexpression abated the anticancer roles of miR-498 in HCC. Additionally, circ_0003028 regulated ODC1 expression by sponging miR-498. Finally, we found that circ_0003028 could induce epithelial-mesenchymal transition of HCC cells by exosome pathway. In brief, the results demonstrated that circ_0003028 exerted tumourigenicity roles via miR-498/ODC1 signaling axis, providing a promising biomarker and therapeutic target for HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call