Abstract

Circularly polarized light (CPL) adds a unique dimension to optical information processing and communication. Integrating CPL sensitivity with light learning and memory in a photonic artificial synapse (PAS) device holds significant value for advanced neuromorphic vision systems. However, the development of such systems has been impeded by the scarcity of suitable CPL active optoelectronic materials. In this work, we employ a helical chiral perovskite hybrid combined with single-wall carbon nanotubes to achieve circularly polarized ultraviolet neuromorphic vision sensing and imaging. The heterostructure demonstrates long-term charge storage as evidenced by multiple-pulsed transient absorption measurements and highly sensitive circular polarization-dependent photodetection, thereby enabling efficient CPL-resolved synaptic and neuromorphic behaviors. Significantly, our PAS sensor arrays adeptly visualize, discriminate, and memorize distinct circularly polarized images with up to 93% recognition accuracy in spiking neural network simulations. These findings underscore the pivotal role of chiral perovskites in advancing PAS technology and circular polarization-enhanced ultraviolet neuromorphic vision systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.