Abstract

The polarization dependence of the photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional (2D) electron system formed on the surface of liquid helium is studied using a setup in which a circular polarization of opposite directions can be produced. Contrary to the results of similar investigations reported for semiconductor 2D electron systems, for electrons on liquid helium, a strong dependence of the amplitude of magnetoconductivity oscillations on the direction of circular polarization is observed. This observation is in accordance with theoretical models based on photon-assisted scattering, and, therefore, it presents a principal argument in the dispute over the origin of microwave-induced conductivity oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.