Abstract

We demonstrate the suitability of microcavities based on circular grating resonators (CGRs) as fast switches. This type of optical resonator is characterized by a high quality factor and very small mode volume. The waveguide-coupled CGRs are fabricated with silicon-on-insulator technology compatible with standard complementary metal-oxide semiconductor (CMOS) processing. The linear optical properties of the CGRs are investigated by transmission spectroscopy. From 3D finite-difference time-domain simulations of isolated CGRs, we identify the measured resonances. We probe the spatial distribution and the parasitic losses of a resonant optical mode with scanning near-field optical microscopy. We observe fast all-optical switching within a few picoseconds by optically generating free charge carriers within the cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.