Abstract

Extrachromosomal circular DNA (eccDNA) is common in somatic tissue, but its existence and effects in the human germline are unexplored. We used microscopy, long-read DNA sequencing, and new analytic methods to document thousands of eccDNAs from human sperm. EccDNAs derived from all genomic regions and mostly contained a single DNA fragment, although some consisted of multiple fragments. The generation of eccDNA inversely correlates with the meiotic recombination rate, and chromosomes with high coding-gene density and Alu element abundance form the least eccDNA. Analysis of insertions in human genomes further indicates that eccDNA can persist in the human germline when the circular molecules reinsert themselves into the chromosomes. Our results suggest that eccDNA has transient and permanent effects on the germline. They explain how differences in the physical and genetic map might arise and offer an explanation of how Alu elements coevolved with genes to protect genome integrity against deleterious mutations producing eccDNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.