Abstract
Light interaction with rotating nanostructures gives rise to phenemona as varied as optical torques and quantum friction. Surprisingly, the most basic optical response function of nanostructures undergoing rotation has not been clearly addressed so far. Here we reveal that mechanical rotation results in circular dichroism in optically isotropic particles, which show an unexpectedly strong dependence on the particle internal geometry. More precisely, particles with one-dimensionally confined electron motion in the plane perpendicular to the rotation axis, such as nanorings and nanocrosses, exhibit a splitting of 2Ω in the particle optical resonances, while compact particles, such as nanodisks and nanospheres, display weak circular dichroism. We base our findings on a quantum-mechanical description of the polarizability of rotating particles, incorporating the mechanical rotation by populating the particle electronic states according to the principle that they are thermally equilibrated in the rotating frame. We further provide insight into the rotational superradience effect and the ensuing optical gain, originating in population inversion as regarded from the lab frame, in which the particle is out of equilibrium. Surprisingly, we find the optical frequency cutoff for superradiance to deviate from the rotation frequency Ω. Our results unveil a rich, unexplored phenomenology of light interaction with rotating objects, which might find applications in various fields, such as optical trapping and sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.