Abstract

Chirality, a geometric property that is of great importance in chemistry, biology, and medicine, has spurred many breakthroughs in the field of multi-dimensional metasurfaces that provide efficient ways of flexibly manipulating amplitude and phase of circular polarization (CP) waves. As one of the most important applications, chiral metamaterials can be used to implement novel absorbers. Herein, an ultra-thin wideband circular dichroic asymmetric metasurface was implemented via loading resistive film into chiral resonators. Opposite and reversible polarization conversion and circular dichroism (CD) were realized as being illuminated by CP waves from both sides meanwhile. Theoretical derivation and simulation verify that the polarization conversion and CD enhancement utilizing multi-layer CD metasurface. It is also found that the orientation angle of the meta-atom of each layer plays an important role in the CD enhancement, which paves a new way for CD enhancement. In addition, the coupling between the CD resonators was utilized to manipulate CD. On this basis, an ultra-thin polarization-insensitive absorber was achieved by employing a C4 2 × 2 CD resonator array, which was identical illuminating from front and back sides. Circular dichroic absorbers possess great potential in practical applications, ranging from stealth technology, antenna isolation, multi-functional microwave devices, chiral sensing, and catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.