Abstract

A novel version of the 2-D adaptive integral method (AIM), called circulant AIM, is presented. The method is suited particularly to cylindrical structures of a quasicircular cross section, such as the wall of a jet engine inlet. Unlike in standard AIM, the auxiliary grid, where the scatterer is embedded, is no longer Cartesian, but polar/cylindrical, resembling a spider's web. In this way, a much lower number of auxiliary unknowns are required, since only delta sources sufficiently close to the outer surface are utilized. Apart from significant savings in memory, the main advantage of this geometry is that the resulting Green's function matrix is not merely Toeplitz, but also circulant, leading to enhanced efficiency of the technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.