Abstract

In this paper, a transmission line circuit model of a magnetically insulated transmission line(MITL) system is developed for a 15-MA Z-pinch driver. The current loss characteristics of multi-level MITL and the ion emission due to the expansion of anode and cathode plasma in the post hole vacuum convolute(PHC) and inner-MITL region are analyzed. The spatiotemporal distribution of current loss of the outer-MITL and ion current of the PHC and inner-MITL of the 15 MA driver are obtained. The results show that the first electron emission happens at the end of constant-impedance MITL and the beginning of constant-gap MITL, and the end of constant-gap MITL firstly achieves fully magnetic insulation. Electron emission occurs at the start of load current and its duration is about 30 ns, which is short for a single pulse and has little effect on the rising edge nor peak value of the load current. The waveform of the electron flow varying with time resembles a saddle shape, whose amplitude first goes up, then comes down, and increases again. The electron flow current decreases from upstream to downstream in constant-gap MITL in space. The starting time of the loss current of the PHC is synchronized with the gap closing time. The loss current amplitude increases rapidly, reaching 4 MA at the peak load current time and 6.5 MA in the end. In the inner-MITL region, the main positive ion species are protons and oxygen 2+. At the beginning, the ion loss current of protons is larger than that of oxygen 2+, and then the protons are quickly magnetically insulated due to the small charge-to-mass ratio. The ion loss current of the inner-MITL region mainly increases after the peak load current time, and its peak value is 2.1 MA. Given the input conditions, the stack is going to deliver current of about 18 MA, the hold voltage is about 2.3 MV, and the peak load current is about 13.5 MA.

Highlights

  • 15 MA Z 箍缩装置真空磁绝缘传输线损失电流的电路模拟*大型 Z 箍缩装置真空磁绝缘传输线(Magnetically-insulated-transmission-line, 简记为 MITL)在能量传输汇聚过程中存在显著电流损失[1,2,3,4].美国 Sandia 国家实 验室 Stygar 等人采用 TL-code 电路编码方法,研究了阴极爆炸发射、真空电子流、 阴极等离子体运动、电子碰撞、大电流密度下电极欧姆加热等因素对美国 20 MA Z 装置电流损失的影响,给出了 MITL 真空电子流的估算公式[1].Hutsel 等人在 Stygar 基础上,基于鞘层电子流再俘获理论,改进了真空电子流计算方法,使

  • 摘 要 采用 TL-code 电路编码方法,建立了 15 MA Z 箍缩装置多层圆盘锥磁绝 缘传输线的全电路模型,分析了外磁绝缘传输线、汇流柱和内磁绝缘传 输线三个区域电流损失特性.外磁绝缘传输线磁绝缘形成过程的空间电 荷损失持续时间约 30 ns,对负载电流影响小.进入磁绝缘稳态时,外磁 绝缘传输线末端鞘层电子流损失约 300 kA.汇流柱区域电流损失与电极 等离子体运动速率密切相关,当等离子体运动速率为 21 cm/μs 时,负载 峰值电流时刻损失电流约 4 MA.内磁绝缘传输线电流损失取决于阳极离 子流种类,电流损失在负载峰值电流时刻之后,损失电流约 2.1 MA.当 15 MA 装置驱动长度 2 cm、半径 2 cm、质量 3 mg 丝阵负载时,绝缘堆 峰值电流约 18 MA,负载峰值电流约 13.5 MA、峰值时间(0-100%)约 为 100 ns

  • The ion loss current of the inner-MITL region mainly increase after the peak load current time

Read more

Summary

15 MA Z 箍缩装置真空磁绝缘传输线损失电流的电路模拟*

大型 Z 箍缩装置真空磁绝缘传输线(Magnetically-insulated-transmission-line, 简记为 MITL)在能量传输汇聚过程中存在显著电流损失[1,2,3,4].美国 Sandia 国家实 验室 Stygar 等人采用 TL-code 电路编码方法,研究了阴极爆炸发射、真空电子流、 阴极等离子体运动、电子碰撞、大电流密度下电极欧姆加热等因素对美国 20 MA Z 装置电流损失的影响,给出了 MITL 真空电子流的估算公式[1].Hutsel 等人在 Stygar 基础上,基于鞘层电子流再俘获理论,改进了真空电子流计算方法,使. 国内中国工程物理研究院宋盛义 、 西北核技术研究所呼义翔等采用 TL-code 电路编码方法,建立了美国 Z 装置四层圆盘锥 MITL 电路模型[5,6].中国 工程物理研究院邹文康等人开发了 FAST 电路模拟程序,分析了电流前沿对电流 损失的影响规律[7,8],北京应用物理与计算数学研究所薛创、丁宁、毛重阳等人建 立了全电路数值模拟程序 FCM-PTS,仿真研究了我国 10 MA 装置电磁能传输规 律[9,10,11].以上电路模型主要用于描述外 MITL 电子流损失,很少考虑等离子运动 造成间隙闭合引起的柱孔区域电流损失、内 MITL 电流损失[12,13,14,15,16,17].随着 Z 箍缩装 置功率和电流等级提高,汇流柱(Post hole vacuum convolute, 简记为 PHC)和内 MITL 的电流损失显著增大[18,19,20,21,22,23,24,25,26],必须在电路建模中进行考虑.

PHC电流损失
MITL电流损失计算

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.