Abstract

Hybrid circuit quantum electrodynamics (QED) involves the study of coherent quantum physics in solid state systems via their interactions with superconducting microwave circuits. Here we present an implementation of a hybrid superconducting qubit that employs a carbon nanotube as a Josephson junction. We realize the junction by contacting a carbon nanotube with a superconducting Pd/Al bi-layer, and implement voltage tunability of the qubit frequency using a local electrostatic gate. We demonstrate strong dispersive coupling to a coplanar waveguide resonator via observation of a resonator frequency shift dependent on applied gate voltage. We extract qubit parameters from spectroscopy using dispersive readout and find qubit relaxation and coherence times in the range of $10-200~\rm{ns}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.