Abstract

This paper proposes an equivalent circuital model to describe the electrical propagation along nanoscale interconnects, made either by carbon nanotubes or graphene nanoribbons. The circuital models are derived from an electrodynamical model for the transport of conduction electrons, and are expressed in the frame of the classical transmission line theory. The per-unit-length parameters, despite their simple expressions, retain the main phenomena occurring at nanoscale, such as the kinetic and quantum effects. In addition, the circuit parameters are expressed as functions of the temperature and the transverse size of the interconnect, thus allowing a qualitative and quantitative analysis of their impact in the electrical performance of the interconnects. The models are used to study some challenging problems in nanopackaging, such as the degradation of electrical performance due to self-heating and the high-frequency current crowding problem because of the skin-effect. Interconnects and vias are analyzed, referring to the 14-nm technology node.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.