Abstract

Racetubes, a conventional system employing hollow glass tubes, are typically used for monitoring circadian rhythms from the model filamentous fungus, Neurospora crassa. However, a major technical limitation in using a conventional system is that racetubes are not amenable for real-time gas perturbations. In this work, we demonstrate a simple microfluidic device combined with real-time gas perturbations for monitoring circadian rhythms in Neurospora crassa using bioluminescence assays. The developed platform is a useful toolbox for investigating molecular responses under various gas conditions for Neurospora and can also be applied to other microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.